RabbitMQ

Rabbitmq消息模式

  • 简单模式:一个生产者P发送消息到队列Q,一个消费者C接收

  • 工作队列模式:一个生产者,多个消费者,每个消费者获取到的消息唯一,多个消费者只有一个队列

  • 发布/订阅模式Publish/Subscribe

    功能:一个生产者发送的消息会被多个消费者获取。一个生产者、一个交换机、多个队列、多个消费者

    生产者:可以将消息发送到队列或者是交换机。

    消费者:只能从队列中获取消息。

    如果消息发送到没有队列绑定的交换机上,那么消息将丢失。

    交换机不能存储消息,消息存储在队列中

  • 路由模式Routing

    生产者发送消息到交换机并且要指定路由key,消费者将队列绑定到交换机时需要指定路由key

  • 通配符模式Topics

    生产者P发送消息到交换机X,type=topic,交换机根据绑定队列的routing key的值进行通配符匹配;符号#:匹配一个或者多个词lazy.# 可以匹配lazy.irs或者lazy.irs.cor

交换器 Fanout,Direct,Topic

  • fanout: 不处理路由键。你只需要简单的将队列绑定到交换机上。一个发送到交换机的消息都会被转发到与该交换机绑定的所有队列上。很像子网广播,每台子网内的主机都获得了一份复制的消息。Fanout交换机转发消息是最快的。
  • direct: 处理路由键。需要将一个队列绑定到交换机上,要求该消息与一个特定的路由键完全匹配。这是一个完整的匹配。如果一个队列绑定到该交换机上要求路由键 “test”,则只有被标记为“test”的消息才被转发,不会转发test.aaa,也不会转发dog.123,只会转发test。
  • topic: 将路由键和某模式进行匹配。此时队列需要绑定要一个模式上。符号“#”匹配一个或多个词,符号“*”匹配不多不少一个词。因此“audit.#”能够匹配到“audit.irs.corporate”,但是“audit.*” 只会匹配到“audit.irs”。

MQ如何保证高可用

集群。

rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式

普通集群模式:

​ 意思就是在多台机器上启动多个rabbitmq实例,每个机器启动一个。但是你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据。完了你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。

​ 这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个queue所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。

​ 而且如果那个放queue的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个queue拉取数据。

​ 所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性可言了,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。

镜像集群模式:

​ 这种模式,才是所谓的rabbitmq的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。

​ 这样的话,好处在于,你任何一个机器宕机了,没事儿,别的机器都可以用。坏处在于,第一,这个性能开销也太大了吧,消息同步所有机器,导致网络带宽压力和消耗很重!第二,这么玩儿,就没有扩展性可言了,如果某个queue负载很重,你加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue。

​ 那么怎么开启这个镜像集群模式呢?其实很简单rabbitmq有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候可以要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。

MQ的重复消费问题

  • 比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update一下好吧。
  • 比如你是写redis,那没问题了,反正每次都是set,天然幂等性
  • 比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的id,类似订单id之类的东西,然后你这里消费到了之后,先根据这个id去比如redis里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个id写redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。

MQ数据丢失问题

  1. 生产者弄丢了数据

    生产者将数据发送到rabbitmq的时候,可能数据就在半路给搞丢了,因为网络啥的问题,都有可能。

    此时可以选择用rabbitmq提供的事务功能,就是生产者发送数据之前开启rabbitmq事务(channel.txSelect),然后发送消息,如果消息没有成功被rabbitmq接收到,那么生产者会收到异常报错,此时就可以回滚事务(channel.txRollback),然后重试发送消息;如果收到了消息,那么可以提交事务(channel.txCommit)。但是问题是,rabbitmq事务机制一搞,基本上吞吐量会下来,因为太耗性能。

    所以一般来说,如果你要确保说写rabbitmq的消息别丢,可以开启confirm模式,在生产者那里设置开启confirm模式之后,你每次写的消息都会分配一个唯一的id,然后如果写入了rabbitmq中,rabbitmq会给你回传一个ack消息,告诉你说这个消息ok了。如果rabbitmq没能处理这个消息,会回调你一个nack接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息id的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。

    事务机制和cnofirm机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是confirm机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息rabbitmq接收了之后会异步回调你一个接口通知你这个消息接收到了。

    所以一般在生产者这块避免数据丢失,都是用confirm机制的。

  2. rabbitmq弄丢了数据

    就是rabbitmq自己弄丢了数据,这个你必须开启rabbitmq的持久化,就是消息写入之后会持久化到磁盘,哪怕是rabbitmq自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,rabbitmq还没持久化,自己就挂了,可能导致少量数据会丢失的,但是这个概率较小。

    设置持久化有两个步骤,第一个是创建queue的时候将其设置为持久化的,这样就可以保证rabbitmq持久化queue的元数据,但是不会持久化queue里的数据;第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时rabbitmq就会将消息持久化到磁盘上去。必须要同时设置这两个持久化才行,rabbitmq哪怕是挂了,再次重启,也会从磁盘上重启恢复queue,恢复这个queue里的数据。

    而且持久化可以跟生产者那边的confirm机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者ack了,所以哪怕是在持久化到磁盘之前,rabbitmq挂了,数据丢了,生产者收不到ack,你也是可以自己重发的。

    哪怕是你给rabbitmq开启了持久化机制,也有一种可能,就是这个消息写到了rabbitmq中,但是还没来得及持久化到磁盘上,结果不巧,此时rabbitmq挂了,就会导致内存里的一点点数据会丢失。

  3. 消费端弄丢了数据

    rabbitmq如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,rabbitmq认为你都消费了,这数据就丢了。

    这个时候得用rabbitmq提供的ack机制,简单来说,就是你关闭rabbitmq自动ack,可以通过一个api来调用就行,然后每次你自己代码里确保处理完的时候,再程序里ack一把。这样的话,如果你还没处理完,不就没有ack?那rabbitmq就认为你还没处理完,这个时候rabbitmq会把这个消费分配给别的consumer去处理,消息是不会丢的。

MQ的消息顺序性

rabbitmq:

​ 拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;

​ 或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理。

image

生产消息积压了几百万条,如何处理?

解决思路:

  1. 先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉
  2. 新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量
  3. 然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue
  4. 接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据
  5. 这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据
  6. 等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息。

消息队列满了如何处理?

​ 如果走的方式是消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了,咋办?

​ 这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,再补数据吧。

如何设计一个MQ

  • 伸缩性。
  • 数据保存(落地磁盘)
  • 可用性
  • 数据丢失?
  1. 首先这个mq得支持可伸缩性吧,就是需要的时候快速扩容,就可以增加吞吐量和容量,那怎么搞?设计个分布式的系统呗,参照一下kafka的设计理念,broker -> topic -> partition,每个partition放一个机器,就存一部分数据。如果现在资源不够了,简单啊,给topic增加partition,然后做数据迁移,增加机器,不就可以存放更多数据,提供更高的吞吐量了?
  2. 其次你得考虑一下这个mq的数据要不要落地磁盘吧?那肯定要了,落磁盘,才能保证别进程挂了数据就丢了。那落磁盘的时候怎么落啊?顺序写,这样就没有磁盘随机读写的寻址开销,磁盘顺序读写的性能是很高的,这就是kafka的思路。
  3. 其次你考虑一下你的mq的可用性啊?这个事儿,具体参考我们之前可用性那个环节讲解的kafka的高可用保障机制。多副本 -> leader & follower -> broker挂了重新选举leader即可对外服务。
  4. 能不能支持数据0丢失啊?可以的,参考我们之前说的那个kafka数据零丢失方案

其实一个mq肯定是很复杂的,面试官问你这个问题,其实是个开放题,他就是看看你有没有从架构角度整体构思和设计的思维以及能力。确实这个问题可以刷掉一大批人,因为大部分人平时不思考这些东西。


文章作者: 凌云
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 凌云 !
  目录